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Abstract 

The idea of successively refining an abstract specification until it contains enough details to suggest 
an implementation has been investigated by numerous researchers. The emphasis to date has been on 
techniques that, unfortunately, lead to a large amount of manual formal labor for each refinement step. 
With such techniques, both the cost and the possibility of errors arising in formal manipulation are high. 
Using a theorem prover can reduce the number of manipulation errors, but, given current technology, 
the amount of labor is still daunting. This research explores an alternative solution to the refinement 
problem, namely the use of syntactic transformations to realize each refinement step. We reduce formal 
labor by employing automatic transformations that guarantee the preservation of desirable properties 
— e.g., deadlock-freedom, safety, liveness. Automatic transformations are particularly appealing for 
the development of large, complex distributed systems, where a manual approach to refinement would 
be prohibitively expensive. Distributed computations are, by nature, reactive and concurrent, so their 
correctness cannot be specified as a simple functional relationship between inputs and outputs. Instead, 
specifications must describe the time-varying behavior of the system. Further difficulty is caused by 
the fact that such important characteristics of distribution as deadlock-freedom are global properties 
that cannot be achieved through considering local structures only. Transformations generally must 
encompass the entire system. This paper presents three syntactic transformations that can be used to 
replace an atomic action in a concurrent program by a program fragment. The work presented here is 
an extension and continuation of the transformations work presented in [Attie et. al. 96]. We give the 
applicability conditions for our transformations, and show that deadlock-freedom and certain liveness 
properties are preserved when the transformations are applied in a context where the applicability 

conditions are satisfied. 



1    Introduction 

Formal program verification is widely accepted as a means of guaranteeing the correctness of con- 
current programs [Hoare 69, Francez 92, Lamport 80, Vardi 87]. The practical utility of formal 
verification is limited by numerous factors — for example, the large amount of manual labor re- 
quired, the possibility of proof errors, the lack of personnel trained in proof techniques, and so 
on. It is also clear that post-development verification alone does not provide a systematic soft- 
ware development process. Successive refinement is an alternative approach for producing correct 
concurrent programs: start with an abstract specification and incrementally refine it to a stage 
where implementation becomes relatively straightforward. Refinement is not a new idea, of course, 
but most of the techniques proposed to date (for example, see [Back et. al. 83, Back et. al. 85, 
Chandy et. al. 88, Ramesh et. al. 87]) require large amounts of manual formal labor for each 
refinement step. Even methodologies based on automatic theorem proving [Manna et. al. 94, 
Constable et. al. 89, Cleaveland et. al. 96] require user intervention, either to select the rule of 
inference used to generate the next step of a proof [Cleaveland et. al. 96], or to supply invariants 
and/or correct automatically generated invariants that are not "inductive," i.e., that cannot be 
proven to be invariants in the deductive system being used [Manna et. al. 94]. Other approaches 
[Aceto 92, van Glabeek 90, Czaja et. al. 91] address the issue of which equivalence relations are 
preserved by refinement. In other words, if P and Q are programs such that P is "bisimilar" to Q 
(under some notion of bisimulation, see [Baeten et. al. 90, Milner 89]), then ref{P) will be bisim- 
ilar to ref(Q) under this same bisimulation notion, where ref(P) and ref(Q) are "corresponding" 
refinements of P, Q, i.e., refinements, that refine the same action of P, Q in the same way. While 
such approaches provide a nice theoretical foundation, they do not directly address the central 
concern, namely the establishment of a relationship between a program and its refinement, i.e., 

between P and ref(P). 

Central to our approach is the concept of correctness-preserving syntactic transformations. Such 
transformations are mechanizable and, therefore, do not involve significant amounts of manual 
labor. Using this approach, the process of development may be viewed as the human-assisted high- 
level compilation of a specification into code. Furthermore, by avoiding proof-based methods, we 
obviate the need to formulate (usually) complicated invariants, a difficult task at best, even with 

the aid of automated tools. 

In the foreseeable future, human creativity will remain essential for choosing an appropriate 
transformation to apply at each stage. But verifying that a transformation preserves desired proper- 
ties is unnecessary, in our approach, because this is guaranteed by the fact that the transformations 
are correctness-preserving. 

This paper presents transformations that decompose an action into a sequences and/or choices 
(possibly nested) of "smaller" actions. These transformations are sound, in that they preserve 
certain correctness properties of concurrent programs (i.e., if the initial program has the property, 
then so will the transformed program). The correctness properties that are preserved are deadlock- 
freedom and temporal leads-to (action a leads-to action b iff whenever a is executed, b is guaranteed 
to be subsequently executed). Formal proofs of soundness are given, as well as an example of 
refinement using the transformations. 



2    Notation, Syntax, and Semantics 

A program is the composition of a fixed set of sequential processes executing concurrently. We 
use the nondeterministic interleaving model of concurrency. That is, we view concurrency as the 
nondeterministic interleaving of events. An event is the atomic (i.e., indivisible) execution of an 
action. We use ;, | , || to denote sequence, choice, and parallel composition, respectively. The 
semantics of these operators is similar to that given in CSP [Hoare 85]. To model state transitions, 
we employ the concept of a labeled transition system, as used in [Milner 89]. A will denote the 
transition relation induced by action, a. The formal meaning of ;, fl , ||, —} is given below. 

Definition 1 (Action) 
An action, a consists of a character string, (i.e., an identifier) drawn from some set, A, of identi- 
fiers. 

We use lower-case letters towards the beginning of the alphabet to denote actions. 

Definition 2 (Action Expression) 
An action expression E is a finite expression given by the following BNF grammar: 

<action-expression> ::= 
<action-expression>   |   <action.expression> | 
<action-expression> ; <action.expression> \ 
(<action-expression>) \ 
<action> | e | 0 

E, F, G, H range over the set of action expressions. We make the convention that ; has higher 
binding power than | , so that E; F fl G denotes (E; F) | G. Intuitively, E; F means execute E 
and then execute F, while E ] F means execute either E or F. J is commutative, and | ,; are 
both associative. 

0, ("Stop"), is the identity element of J , and e ("Skip"), is the identity element of;. They obey 
the following axioms: 0 | A = A, A j 0 = A, A; e = A, e; A = A. We define the relation of equality 
(=) among action expressions as follows. E = F iff one can be obtained from the other by a finite 
number of any of the following: 1) application of the above axioms for 0 and e, 2) application of the 
commutativity property of | or the associativity property of | and ;, and 3) adding/removing 
parentheses in accordance with the precedence of ; over  | . 

We define aE, the alphabet of action expression E, as follows. 

Definition 3 (Alphabet) 
The alphabet of an action expression is given as follows: 

alphabet(a) = {a} 

alphabet(E | F) = alphabet(E) U alphabet(F) 

alphabet(E; F) = alphabet(E) U alphabet(F) 

Definition 4 (Sequential Process) 
A sequential process Pi consists of a process body and a process alphabet. The body of process Pi, 
body (Pi), is an expression of the form Fi;*Ei where F^Ei are action expressions. The alphabet of 
process Pi, alphabet(Pi), is defined to be a set of action names. The process alphabet must contain 
alphabet(Fi) U alphabet(Ei). 



Note that this definition extends the definition of "alphabet" to processes. We have also introduced 
"*", which denotes infinite iteration. We extend = to process bodies in a straightforward manner. 
If body(Pi) = Ff, *Et, and body(Pj) = Fj\ *Ej, then body{Pi) = body{Pj) iff Ft = Fj and Et = Ej. 
Finally, Pi = Pj iff alphabet(Pi) = alphabet(Pj) and body(Pi) = body(Pj). (Note that when we 
write alphabet(Pi) = alphabet(Pj), the = symbol denotes standard set-theoretic equality, because 
alphabets are sets.) 

Definition 5 (Program) 
A program P. is the parallel composition of one or more sequential processes; i.e., P = (|| i G <p : Pi), 
where <p is some suitable index set. Also, alphabet(P) = (Ui G <p : alphabet(Pi)). 

|| is commutative and associative, which justifies the index notation || i G <p introduced in the above 
definition. For sake of simplicity, we assume that all variables in a program are uniquely named. 
We extend = to programs in the expected manner: (|| i G <p : Pi) = (|| i G ip : Qi) iff ip = ip and, 
for alii G <p,Pi = Qi. 

Definition 6 (Participant Set PAp) 
The participant set PAp (a) of action a is given by: 

PAp(a) = {i | a G alphabet(Pi)} 

PAp(a) is the set of processes within program P that jointly and synchronously participate in 
the execution of action a. If |PAp(a)| > 1 then a is a multiparty interaction of program P. If 
|P.Ap(a)| = 1, then a is a local action of some process Pi (namely the Pi such that a G alphabet(Pi)) 
in program P. 

2.1    Operational Semantics 

The operational semantics of a program P is defined by giving the transitions that the execution of 
each action a in alphabet(P) can generate. Our definition proceeds bottom up, defining the binary 
transition relation A over action expressions first, then over sequential processes, and finally over 
programs. In each case, execution of a takes the action expression (sequential process, program) 
to a new action expression (sequential process, program resp.). In order to avoid the well-known 
phenomenon that the behavior of E || F and e; E | e; F is different even though they are "equal", we 

stipulate that the transition relation cannot be applied to 0 and e, i.e., 4- and ->• are not defined. 
This does not cause any difficulties, since e and 0 can always be eliminated from an expression 
using the above axioms, after which the transition relation can be applied. This stipulation means 
that 0 and e are never executed. 

Definition 7 (Transition Relation —>•) 
The transitions generated by action a are as follows: 

Act. 
(o;£)AB 

Ch. 
E^E' F^F' 

(E\F)AE'       (EIF)AF' 



E^E' 
eq   (E;F)A(£';P) 

Iter m^±E 

We extend A to processes by stipulating that P AP/ iff body (Pi)-^ body (P') and alphabet(Pi) = 
alphabet(P-). In other words, the alphabets are the same and the bodies are related by A. Finally, 
we extend A to programs as follows: 

LetP = (\\ie<p: Pi), Pf = (\\ieiP: P[). Then P AP' iff: 

1. foralli£PAp(a):Pi-^Pl 

2. for alli€ip- PAP(a) : P = P/ 

Definition 8 (Ready, Enabled, Disabled) 
For a process Pi, we write Pi A to mean that there exists a P[ such that Pi AP-.  We say that Pi 

readies a in this case. 

For a program P, we write P A to mean that there exists a P' such that P AP'. In this case, we 

say that P enables a, or that a is enabled in P.  We also write P ^ to mean that there does not 
exist a P' such that P AP', and we say that a is disabled in P in this case. 

Suppose Pi A. Then the general form for the body of Pi is P; *E, where F has one of the 
forms c, c; G, c 1 H, c; G | H. All of these forms are subsumed by the form c\G \ H however, since 
c _ c. £ | o, C; G = c; G \ 0, c | G = c; e \ G. Thus the introduction of 0 and e allows us to avoid a 
large amount of tedious case-analysis. We now present some preliminary definitions and results. 

Definition 9 (Derivative, Path) 
If p %...*$, pi for some sequence ai,...,an of actions, then (again following [Milner 89]) we say 
that P' is a derivative of P. The sequence ai,...,an is called a path. // path ir = ai,...,an, then 
we abbreviate P% •■ ■ ^P' by P^P'. 

A path is also called a computation. 

Definition 10 (Maximal Path) 
A path that is either infinite or ends in a derivative that has no enabled actions is called maximal. 

Consider a program consisting of a single process Pi = *[a; b | a; c]. Clearly, Pi -> (b; Pi),&nd 
px A(c;Pi). This example can easily be extended to arbitrary paths. Thus, establishing P A P' 
an(i pJL>p" for some P,TT,P',P", does not allow us to conclude P' = P". Thus, if P and TT are 
given, then the assertion P4P' can be regarded as an abbreviation for "let P AP' for some P'." 

Suppose we have a path TT = TT'&CTT". Then, the path TT'C&TT" is said to be obtained from ir by a 

single exchange of actions b and c. 



Definition 11 (Independent) 
Two actions b, c are independent in program P iff PAp(b) D PAp(c) = 0 

Definition 12 (Equivalent) 
Two paths 7T, p are equivalent (7r = p) iff one can be obtained from the other by a finite or countably 
infinite number of exchanges of adjacent independent actions (with the restriction that each action 
can be subjected to only a finite number of exchanges). 

Proposition 1 If actions b,c are independent in program P, and P—>P', then P-^-tP'. 

Proposition 2 Let P -^ Q. If it and p are equivalent, then P —> Q. 

3    Correctness Properties of Programs 

As stated in the introduction, the correctness properties that our transformations preserve are 
deadlock-freedom and temporal leads-to. We define these properties as follows. 

Definition 13 (Deadlock-Freedom) 
If for every derivative P' of P, there is some action a such that P' ->■, then P is deadlock-free. 

As our concern here is with nonterminating, reactive, concurrent programs, the property of 
deadlock-freedom is a crucial one, and indeed is a prerequisite for demonstrating that our transfor- 
mations preserve the temporal leads-to property. 

Definition 14 (Temporal Leads-to, a ~» b, f= a ~> b) 
A computation n satisfies a ~» 6 iff every occurrence of a along n is eventually followed by an 
occurrence ofb. 

A program P satisfies o ~» b iff every maximal computation of P satisfies a ~> b. 

We write n \= a^> b, P^fl-^6 for n satisfies a ~» b, P satisfies a^> b respectively. 

Temporal leads-to is a particular form of liveness property that is very useful in verifying that 
distributed systems interact properly with their environment. For example, every request must 
"lead-to" a suitable response. Temporal leads-to properties are also interesting because they can 
be easily composed. For example, if a ~» 6, and b ~> c, then a~^ c (i.e., ~> is transitive). Thus, 
a leads-to property a\ ~> an can be established as a sequence of leads-to properties a\ ~* ai, 
Ü2 ~» a$, ..., an_i ~> an. Each of these intermediate leads-to properties would presumably be 
established by a single transformation, and then a\ ~» an would be established by the sequence of 
these transformations. 

In establishing liveness properties, the notion of fairness is useful. A fair scheduling notion 
usually specifies that if an action is enabled "sufficiently often," then it is eventually executed 
(where different fairness notions have different specifications for "sufficiently often"). For our 
purposes, the following notion suffices. 

Definition 15 (Weak Action Fairness) 
The fairness notion weak action fairness, denoted $, is as follows: 

if an action is enabled continuously from some point onwards, then it is eventually executed. 



In the sequel, we shall use "fairness" as an abbreviation for weak action fairness. 

Definition 16 (Fair Computation) 
A computation ir is fair iff n has no suffix along which some action is enabled continuously but 

never executed. 

Definition 17 (Fair a ~> 6, f=$ o ~» b) 
A program P satisfies a ~» b with respect to weak fairness iff every maximal fair computation of P 

satisfies a ~* b. 

We write P )=$ a ~> b for P satisfies a^b with respect to weak fairness. 

4    The Transformations 

As stated in the introduction, our transformations decompose an action c into possibly nested 
sequences and/or choices of "smaller" actions. Thus, every occurrence of c in some process Pi is 
replaced by an action expression Ei that specifies the decomposition of Pi's part in action c. Since 
c has, in general, more than one participant process, we are lead to the following definition. 

Definition 18 (Program Fragment, Process Fragment) 
Let P be a program and c G alphabet(P). For each i G PAP(c), let Ei be an action expression such 
that alphabet(Ei) D alphabet(P) = 0. Then E = (\\ i G PAP(c) : E{) is a program fragment for P 
with respect to c, and each Ei is a process fragment for Pi with respect to c. 

We have identified three transformations that can be used to refine programs for concurrent 
systems (we take our "high-level" programs to be, in effect, executable specifications). Given a 
program fragment E = (|| i G if): Ei) for P with respect to c, our transformations are as follows: 

1. The transformation [c/c;E\: every occurrence of c in Pi (for all i G PAP(c)) is replaced by 

c;Ei. 

2. The transformation [c/E;c]: every occurrence of c in Pi (for all i G PAP(c)) is replaced by 

Ei\c. 

3. The transformation [c/E]: every occurrence of c in Pi (for all i G PAP(c)) is replaced by Ei. 

To facilitate the formal definition of these transformation, we first define our notion of syntactic 

substitution. 

Definition 19 (Syntactic Substitution) 
Let a be an arbitrary action, and E, G, H be arbitrary action expressions.  Then, we have 

e[c/E) = e 
0[c/E] = 0 
a[c/E] =aifa^c 
c[c/E] = E 
(G 1 H)[c/E] = ((G[c/E]) | (H[c/E})) 
(G;H)[c/E} = ((G[c/E]);(H[c/E})) 

In the sequel, we will use the abbreviation Gt for G[c/E] for an arbitrary action expression G. 



The following definitions will also be useful in the subsequent technical discussion. 

Definition 20 (initial(Ei), initial(E)) 

Let E = (|| i G V : Ei) ^e a program fragment for P with respect to c. Then initial(Ei) = {a \ E{ —)•}, 

and initial(E) = {a | E-* }. 

In other words, initial(Ei), initial(E) are the sets of actions that are the first actions executable 
by Ei, E respectively. 

We say that a process Pi enters E iff Pi executes an action in initial (E). 

Example 1 If E = (E\ :: a;b) || (E2 :: (b;d) | a), theninitial(E2) = {a,b}, andinitial(E) = {a}. 

Definition 21 (choice(Pi,c)) 
Let Pi be a process and c G alphabet(Pi). Then choice(Pi,c) = {d \   "c | d" occurs in body(Pi)}. 

In other words, choice(Pi,c) is the set of all actions that Pi could execute as an alternative choice 
to executing c. 

4.1 The Transformation [c/c; E] 

Definition 22 (Transformation [c/c;E]) 
We define the transformation [c/c; E] in a bottom-up manner as follows. For an arbitrary pro- 
cess Pi such that c G alphabet(Pi), and body(Pi) = H; *G for some action expressions H, G, define 
Pi[c/c; E] = Qi, where alphabet(Qi) = alphabet(Pi) Ualphabet(E), body{Qi) = H[c/c; E]; *(G[c/c; E]). 

Let P = (|| i E (p : Pi) be an arbitrary program.  We define 
P[c/c-E) = ( || i e PAP(C) : Pi[c/c;E})  \\  (|| i e y> - PAP(c) : Pi). 

4.2 The Transformation [c/E; c] 

Definition 23 (Transformation [c/E;c]) 
We define transformation [c/E; c] in a bottom-up manner as follows. For an arbitrary process 
Pi such that c € alphabet(Pi), and body(Pi) = H;*G for some action expressions H,G, define 
Pi[c/E;c) = Qi, where alphabet(Qi) = alphabet(Pi) U alphabet(E), body(Qi) = H[c/E;c];*(G[c/E;c]). 

Let P = ( || i £ <p : Pi) be an arbitrary program.  We define 
P[c/E; c] = ( || i E PAP(c) : P^c/E; c])  \\  (|| ietp- PAP(c) : Pi). 

4.3 The Transformation [c/E] 

Definition 24 (Transformation [c/E]) 
We define the transformation [c/E] in a bottom-up manner as follows. For an arbitrary process 
Pi such that c G alphabet(Pi), and body(Pi) = H;*G for some action expressions H,G, define 
Pi[c/E] = Qi, where alphabet(Qi) = alphabet(Pi) U alphabet(E), body(Qi) = H[c/E];*(G[c/E]). 

Let P = ( || i G (f : Pi) be an arbitrary program.   We define 
P[c/E] = (\\ie PAP(c) : Pi[c/E])  \\  ( \\ i G </> - PAP(c) : Pt). 



5    Soundness of the Transformations 

All of our transformations have associated applicability conditions that determine when the trans- 
formations can be used. These applicability conditions are needed in order to avoid the following 
problems that can arise when applying a transformation: 

• Introduction of deadlock: The original program is deadlock-free but the transformed program 
is deadlock-prone. 

• Partial execution: The action c in the original program is atomic, i.e., either it is executed to 
completion or not at all. When c is refined into (for example) E, it is possible for situations 
to arise where E is only partially executed. This is undesirable, since an execution of c in the 
original program corresponds to a complete execution of E in the transformed program. A 
partial execution of E therefore, corresponds to no behavior of the original program. Hence 
the transformed program exhibits behavior that could never be exhibited by the original 
program. This makes it impossible (usually) to verify that the desired correctness properties 
embodied in the original program have been preserved by the transformed program. 

• Uncoordinated entry: It is possible that some participants of c start executing E (in the 
refined program) but others never enter their corresponding parts of E. 

In effect, these applicability conditions test for certain properties of programs that guarantee the 
absence of the problems discussed above. 

5.1    The Applicability Conditions 

We now present and define formally the applicability conditions that must be satisfied in order 
for our transformations to preserve the correctness properties of deadlock-freedom and temporal 
leads-to. We shall need the following definition. 

Definition 25 (E) 
Let E = (|| i Gip : Ei) be a program fragment. Then E = (|| i G tp : E{\ 0). 

E is a program whose computations are those that can be generated by executing each process 
fragment E{ exactly once. 

The single iteration property states that any partial execution of E (in isolation) can always be 
completed into a full execution of E. In other words, if E is regarded as a program and executed 
in isolation, then every process (i.e., the Ehi G <p) is guaranteed to execute its body to completion. 
This condition is crucial in establishing that neither partial execution nor deadlock (see above) occur 
in the transformed program. 

Definition 26 (The Single-Iteration Property) 
Let E = ( ||  i e ip : Ei) be a program fragment.   Then E has the single-iteration property iff for 
every derivative F of E, there exists a path IT such that F —> (|| i G <p : 0). 

Definition 27 (The Loose-Synchronization Property) 
Let E = ( || i G ip : E{) be a program fragment. Then E has the loose-synchronization property iff 
E has no derivative of the form (|| i G ip' : Ef, 0) || (|| i G <p" : Ff, 0) || (|| i G if/" : 0), where cp', 
tp'" are nonempty, and ip', (p", </?'" partition (p. 



In effect, the loose synchronization property states that it is impossible for a subset of the processes 
in <p to execute a complete iteration of their process fragments Ei while another subset has not yet 
started. Hence, all the participants of c are loosely synchronized in that at some point, they must 
simultaneously all be in E. 

Definition 28 (The No-Overtaking Property) 
Let E = (|| i e<p: Ei) be a program fragment. Then E has the no-overtaking property iff for every 
derivative of E of the form ( || i G ip' : FJ;0) || ( || i G tp" : 0), (where ip',ip" partition ip), we have 
(\Ji£v>alphabet(Fi)) D (öjeip»alphabet(Ej)) = 0. 

In effect, the no-overtaking property states that it is impossible for a subset of the processes in tp 
to execute a complete iteration of their process fragments Ei and then loop around and interact 
with the other processes that have yet to complete the first iteration. This allows us to establish a 
"separation" between successive iterations of E: a process executing the n'th iteration of E cannot 
interact with a process executing the n + l'st iteration of E. 

Our next applicability condition is conspiracy-resistance. The conspiracy-resistance property 
states that, if the processes that ready a particular action a are frozen (i.e., not allowed to execute 
any action), then that freezing does not prevent yet another participant of a from eventually 
readying a. This property is used in proving that partial execution does not occur in the transformed 
program (since all of the participants of E eventually ready E and so E is executed to completion. 

For a more extensive discussion of conspiracy-resistance, the reader is referred to [Attie et. al. 93]. 
To formally define conspiracy resistance, we must first define the concept of (a, A) -derived program. 

Definition 29 ((a, ^4)-derived program) 
Let P be a program and let a G alphabet{P), and A C PAP(a). The (a, A)-derived program Pa,A 
is obtained from P by replacing with 0 every occurrence of b (where b ^ a) that occurs in a choice 
with a, in every process Pi G A. 

Definition 30 (Conspiracy Resistance) 
An action a is conspiracy resistant in a program P iff for every computation ir of P the following 
condition holds: 

Let 7Ti be any finite prefix of ir ending in the derivative P', and let PA\ be the set of all 
the participants of a that ready a in P'. Then, for every computation 7r2 of the (a, PAx

a)- 
derived program P' FA% obtained from P', there exists a participant Pj G (PAa - PA%) 

such that Pj eventually readies a along ixi. 

The third applicability condition is coordinated-entry. Conspiracy resistance guarantees that 
every participant of E eventually readies E. However, once E is readied, it is still possible for the 
participant process to execute actions not in E (if E occurs in a choice). The coordinated-entry 
condition guarantees that, if one of the participants of E has actually chosen E for execution, then 
they will all do so. 

Definition 31 (Coordinated Entry) 
We say that a program fragment E = (|| i G <p : Ei) is coordinated-entry with respect to a program 
P = ( || i g (p : Pj) and an action c G alphabet(P) iff there exists a ip C cp such that: 
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1. /\i,j E ip : initial(Ei) = initial(Ej) Ainitial(Ei) C initial(E) 

2. f\i Eip — ip: initial(Ei) n initial(E) = 0 

3. f\i € ip — ip : choice(Pi,c) fl (^i^alphabet(P)) ^ 0 

The first clause says that every initial action of E is an initial action of every Ei, i 6 ip. Hence, 
every process fragment Ei, i G ip, participates in every initial action of E. The second clause says 
that no initial action of Ei, i £ ip, is an initial action of E. In other words, the process fragments 
Ei, i £ ip never participate in any initial action of E. These two clauses together imply that it is 
the process fragments in ip that control the entry into E for all processes. The third clause says 
that every action that is a possible alternative choice to entering E must have some participant 
process with index in ip. Thus, the alternatives to entering E are controlled by the processes in 
ip. Hence, in the transformed program, if a process Pi£ip arrives at the choice point where it can 
either enter E or execute an alternative action, there are two possibilities: 

1. Pi enters E. In this case, every process in ip must enter E simultaneously with Pi, by clause 
1. Also, by clause 3, no process outside ip can execute an action not in E upon reaching the 
choice point. 

2. Pi executes an action not in E. In this case, no process in ip can enter E upon reaching the 
choice point, since the processes in ip must enter E together (by clause 1). By clause 2, no 
process outside ip can enter E upon reaching the choice point, since these processes can only 
enter E by interacting with some process in ip that has already entered E. 

Hence we see that in both cases all processes make the same decision about whether or not to enter 
E. 

We now give the exact applicability conditions for each transformation. We assume, in the rest of 
the paper (except the example), that these conditions are always met whenever the transformation 
is mentioned. 

Definition 32 (Applicability Conditions for the Transformation [c/c; E]) 
The applicability conditions for [c/c; E] are as follows: 

1. alphabet(E) n alphabet(P) = 0. 

2. E has the single-iteration property. 

Definition 33 (Applicability Conditions for the Transformation [c/E; c]) 
The applicability conditions for [c/E; c] are as follows: 

1. alphabet(E) D alphabet(P) = 0. 

2. E has the single-iteration property. 

3. c is conspiracy resistant in P. 

4. E is coordinated-entry with respect to P and c. 
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Definition 34 (Applicability Conditions for the Transformation [c/E]) 
The applicability conditions for [c/E] are as follows: 

1. alphabet(E) n alphabet(P) = 0. 

2. E has the single-iteration property. 

3. c is conspiracy resistant in P. 

4- E is coordinated-entry with respect to P and c. 

5. E has the loose-synchronization property. 

6. E has the no-overtaking property. 

5.2 Layering Results 

Our proof strategy rests on the following lemmas, which show that for every computation of the 
transformed program, there exists an equivalent "layered" computation in which all the actions of 
(every iteration of) E are executed contiguously, i.e., with no actions outside E occurring in between 
two actions from E. This allows us to establish a natural correspondence between computations 
of the original program P and the transformed program Q : a computation ir of P corresponds to 
every layered computation p of Q that results from ir by replacing every execution of c in ir by a 
contiguous execution of E. The correspondence is extended to unlayered computations of Q using 
the equivalence relation over computations: if ir corresponds to p, and p = p', then 7r corresponds 
to p'. Since there is, in general, more than one way to execute E, the correspondence relation can 
be seen as relating a single computation of P to a countably infinite number of equivalence classes 
of computations of Q. 

Lemma 3 Let Q = P[c/c;E]. For every computation it of Q, there exists an equivalent layered 
computation ir'. 

Lemma 4 Let Q = P[c/E;c]. For every computation IT of Q, there exists an equivalent layered 
computation n'. 

Lemma 5 Let Q = P[c/E]. For every computation ir of Q, there exists an equivalent layered 
computation ir'. 

5.3 Deadlock-Freedom Results 

Our deadlock freedom results are straightforward: all of our transformations preserve the property 
of deadlock freedom. Thus, if the original program is deadlock free, then so is the transformed 
program. 

Theorem 6 Let Q — P[c/c;E]. If P is deadlock-free, then so is Q. 

Theorem 7 Let Q = P[c/E;c]. If P is deadlock-free, then so is Q. 

Theorem 8 Let Q = P[c/E]. If P is deadlock-free, then so is Q. 
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5.4    Temporal Leads-to Results 

We assume, in this section, that P is deadlock free (and hence Q is too by the deadlock-freedom 
results above). We group the liveness results for each transformation. The first theorem of each 
group expresses the preservation (by the transformations) of leads-to properties satisfied by the 
original program. The second theorem of each group expresses the preservation (by the transfor- 
mations) of leads-to properties satisfied by the program fragment E used in the transformation. 
For the third theorem of each group, we first need the following definition. 

Definition 35 (O) 
Let E = ( || i G ip : Ej) be a program fragment, and let E = ( || i E tp : E{\ 0).   Then E \= Ob iff 
every computation of E contains b. 

Now suppose the original program P satisfies a ~> c. This would then imply that in the 
transformed program Q, if a is executed, then eventually a derivative is reached where entering 
E is the only possible continuation (otherwise, there would be an alternative to c in P, and so 
P|=flMc would not hold). Hence, if executing b is inevitable once E is entered, it then follows 
that a leads to b in Q. This is expressed by the third theorem of each group. 

5.4.1 Liveness Results for The Transformation [c/c;E] 

Theorem 9 Let Q = P[c/c; E]. If PAP(a) n PAP(b) £ 0 and P |=$ a ~» b, then Q\=$a^b. 

Theorem 10 Let Q = P[c/c;E]. If PAE(a) n PAE(b) ^ 0 andE\=a^b, then Q |=$ a ~» b. 

Theorem 11 Let Q = P[c/c;E]. IfP\=$a^c, and E \= Ob, then Q\=^a^b. 

5.4.2 Liveness Results for The Transformation [c/E; c] 

Theorem 12 Let Q = P[c/E; c}. If PAP(a) n PAP{b) 7^ 0 and P |=$ a ~> b, then Q (=# a ~> b. 

Theorem 13 Let Q = P[c/E; c\. If PAE{a) n PAE(b) ^ 0 andE\=a^b, then Q\=$a-^b. 

Theorem 14 Let Q = P[c/E; c]. If P (=$ a ~» c, and E \= Ob, then Q\=<s>a^>b. 

5.4.3 Liveness Results for The Transformation [c/E] 

Theorem 15 Let Q = P[c/E]. If PAP{a) (1 PAP{b) 7^ 0 and P |=* a ~» b, then Q[=$a-^b. 

Theorem 16 Let Q = P[c/E]. If PAE{a) n PAE{b) ^ 0 and E \= a ^ b, then Q f=* o ^ 6. 

Theorem 17 Let Q = P[c/E}. 7/ P |=$ a ~> c, and E f= Ob, then Q\=$a^b. 
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6    Example: Mobile Cellular Phone System 

We now illustrate the use of the transformations to establish deadlock freedom and progress prop- 
erties. The example we use is a solution to the mobile cellular telephone handoff problem, for which 
we first give an informal description. 

6.1    Informal Problem Description 

A mobile telephone system has a fixed number, N, of mobile telephones (henceforth called mobiles), 
and a fixed number, M, of message switching centers (henceforth called msc's). Normally, each 
mobile has a radio link with exactly one msc, which is called that mobile's manager, all calls to 
the mobile being routed by trunk lines to this msc, and then by radio to the mobile. The mobile, 
however, may move away from the msc so that eventually the signal quality between the mobile 
and the msc deteriorates to an unacceptable level. When this happens, management of the mobile 
must be transferred to another msc with which it has a better signal. This transfer operation is 

called a handoff. 

Informally, the system operates as follows: Each msc repeatedly performs a signal-level check 
on all mobiles that it handles. When a signal-level check indicates that the signal quality has 
deteriorated to an unacceptable level, the following events occur in sequence: 

1. the msc synchronizes with all other msc's 

2. all of the msc's perform a signal-level check with the mobile 

3. an election is performed to determine the msc with the highest signal level 

4. a handoff is performed between the old and new msc's 

The interactions corresponding to these events are: 

• chk: a managing msc interacts with a mobile to determine the strength of the signal between 
them. This is called a "signal-level check." 

• synch: used to synchronize all of the msc's as a preliminary to electing a new msc to handle 
a particular mobile 

• psc: a signal-level check performed prior to an election 

• el: the election of a new msc 

• st: the preliminary setting up of trunk lines just prior to a handoff 

• ho: the handoff 

There are no safety specifications in this system. The liveness specification may be stated informally 

as: 

If the signal between a particular mobile and it's msc deteriorates to an unacceptable level, 
then, provided the mobile has not moved outside the area of coverage, it will eventually be handed 
off to an msc with whom it has adequate signal strength. 

The problem description was obtained from the Electronic Industries Association Interim Stan- 
dard, "Cellular Radiotelecommunication Intersystem Operations: Intersystem Handoff," [EIA87]. 
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6.2 The Example 

We consider a system consisting of one mobile (mb) and two msc's (mcl,mc2). Our initial high- 
level model of the system is given in figure 1. There are only two actions: coord\ models the case 
where the mobile is being managed by mcl, and coord2 models the case where the mobile is being 
managed by mc2. 

We apply the transformation [c/E] to program 1, where c = coordi, and E = 
(Ei :: chki; {ah | (bt^psci))) \\ (E2 :: chki; [ah ] {bh; synchi; psa))) \\ (E3 :: ah [] [synchi;psci)). 

We can easily check that the applicability conditions for [c/E] are met. The resulting program 
2 is shown in figure 2. 

Next we apply the transformation [c/c;E] to program 2, where c = psci, and E = (Ei :: 
hon D hox2)  ||  [E2 :: eh;(hon ] {st^hou)))  \\  {E3 :: eh;{hon ] (stu;ho12)))■ 

We can verify that the applicability conditions for [c/c; E] are met. The resulting program 3 is 
shown in figure 3. 

To complete the derivation of the program, we apply symmetric transformations to coord2. 
The first of these is [c/E] where c = coord2, and E = (Ei :: chk2;(at2 | (bt2\psc2))) \\ (E2 :: 
at2 \ (synch2;psc2))  ||  (E3 :: chk2;{at2 J (bt2;synch2;psc2))). 

Applying this to program 3 results in program 4, given in figure 4. 

Finally, we apply the transformation [c/c\E] to program 4, where c = psc2, and E = (E\ :: 
ho22 | ho2i) || (E2 :: el2;(ho22 ] (afcij^i))) II (#3 :: el2;(ho22 ] (si2i;^o2i))). The resulting 
program 5, given in figure 5, is our final program. 

6.3 Correctness Properties of the Final Program 

Deadlock-freedom of program 1 is trivially verified by inspection. Hence, by our deadlock-freedom 
results, we conclude that program 5 is deadlock-free. By using our liveness results, we conclude that 
program 5 satisfies the following leads-to properties. We list the relevant transformation to the left 
of the properties (we used four transformations, so we refer to them in sequence as transformations 
1 through 4): 

Transformation 1: bt\ ~*$ psc\ 
Transformation 2: psc\ ^$ el\ 
Transformation 3: bt2 ~>$ psc2 

Transformation 4: psc2 ~>$ el2 

These properties can be composed together, using the transitivity of ~». This then allows us to 
conclude the liveness properties that result from composing transformations: 

Transformation 1 followed by transformation 2: bh ~*$ eh 
Transformation 3 followed by transformation 4: bt2 ~>$ el2 

We remark that, given program 5 only, the task of establishing the above correctness properties 
would not be altogether trivial. A complicated invariant would have to be established to prove 
deadlock-freedom of program 5, and an argument based on decreasing bound functions or "helpful 
directions" would be used to show liveness. Such arguments can be formalized using deductive 
systems for temporal logic [Manna et. al. 94]. The proofs however, are usually somewhat involved. 

Finally, we note that program 5 is slightly sub-optimal:  mcl participates in at2.   Since at2 
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mb:: *[     coord\ 
|   coord.2 

] 

mcl:: *[     coord\ 
|   coord,2 

mc2::   *[     coord\ 
\   coords 

] 

Figure 1: Program 1 

mb:: *[     chk\ ; [    at\ 
|  bti;psci 

} 

coord2 

mcl:: *[     chk\ ; [   at\ 
\ 6*i ; synchi ; psci 

] 
1 

coorefo 

mc2:: *[     [    a*i 
| synchi ; psci 

coord2 

Figure 2: Program 2 
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mb:: *[     chki ; [   at\ 
I 6ii ; psci ; [ hon 

1 hou 
] 

coord,2 

mcl:: *[     chki ; [   at\ 
I 6*i ; synchi ; psci ; eZi ; [   hou 

\ s*i2 ; hon 

] 

coorcfo 

] 
II 

mc2:: *[     [    at\ 
\  synchi ; psci ; el\ ; [    /ion 

D   S*12 ; ZlOi2 

] 

coordi 

} 

Figure 3: Program 3 
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mb:: *[     chki ; [   at\ 
| bti ; psci ; [ hon 

D hon 
} 

} 

} 

chk2 ; [   o,t2 
| bt2 ; psc2 

] 

mcl:: *[     c/ifci ; [   ah 
| 6ti ; synchi ; psci ; el\ ; [   /ion 

[   St\2 ; ZlOi2 

] 

a<2 
| synch.2 ; p«C2 

] 
] 

mc2:: *[     [    a*i 
| synchi ; psci ; eh ; [    /ion 

| st12 ; ftoi2 

] 

c/iA;2 ; [   a<2 
| 6i2 ; synchz ; psc2 

] 

Figure 4: Program 4 
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mb:: *[     chk\ ; [   at\ 
\  btx ; psci ; [    hon 

D hon 

) 

} 
1 

chk2 ; [   at2 

D bt2 ; psc2 ; [   /io22 

| ho2\ 

] 

mcl:: *[     c/ifci ; [    at\ 
|  ftti ; synchi ; psci ; e^i ; [    ho\\ 

\ stn ; hou 
} 

} 

[   ah 

synch2 ; psc2 ; el2 ; [    /io22 
| st2i ; /io2x 

mc2:: *[     [    at\ 
| synchi \ psc\ ; e/i ; [   hon 

| sti2 ; /1012 

] 
] 

I 
chk2 ; [   at2 

D W2 ; synch2 ; psc2 ; e/2 ; [   ho22 

D S<21 ; foo2i 
] 

] 

Figure 5: Program 5 
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represents the positive result of a signal-level check between mc2 and mb only, there is no need 
for mcl to participate in at2. However, the applicability conditions of the transformation [c/E] 
required this participation. Eliminating this phenomenon would require designing transformations 
that permit participant elimination, i.e., an action c may be refined into a fragment E whose 
execution does not always require the participation of all the processes that would participate m 
the execution of c (in the original program). Such transformations are a topic for future work. 

7    Future Work 

In future work, we intend to address the topic of how to verify that the applicability conditions hold. 
Some of the conditions (coordinated-entry, alphabet(E) n alphabet(P) = 0) are purely syntactic, 
and so can be checked algorithmically in an efficient manner. The remaining conditions (single- 
iteration, loose-synchronization, no-overtaking, conspiracy-resistance) are semantic. Checking them 
mechanically may incur exponential overhead. We plan to investigate alternative strategies. It may 
be possible to "construct" the fragment E, using a set of "derivation rules", so that E has the single- 
iteration and no-overtaking properties. Furthermore, one might then be able to show that, when E 
is constructed in this certain manner, that the property of conspiracy resistance is also preserved 
by the transformations. Thus, we are preserving a property (conspiracy-resistance) not because 
it is inherently an interesting program correctness property, but because it is an applicability 
condition for our transformations. In the proposal for this contract, we envisioned doing this when 
the applicability condition was a syntactic property. It has turned out to be useful to have more 
complex semantic properties as the applicability conditions for our transformations. 

Devising a methodology for ensuring that the applicability conditions are met will allow us to 
reason much more powerfully about the results of applying sequences of transformations. Currently 
we can infer the results of applying a sequence of transformations, but the intermediate steps of 
applying the transformations incur a manual verification of the applicability conditions. When 
these conditions are not met, we currently have little insight into why this is so and how we can 
modify the derivation sequence of transformations to ensure that the applicability conditions for 

the next transformation are met. 

8    Conclusions 

In this paper we have described three transformations for program refinement. They are used for 
refining actions into nested sequences and choices of more refined actions, and may be viewed as 
tools for decomposing a large action into a sequence of smaller actions. Such decomposition is 
a natural step in the process of refining programs. We proved formally that our transformations 

preserve deadlock-freedom and temporal leads-to. 

We note that the formal correctness proofs for the transformations are somewhat lengthy. The 
salient point, however, is that the proofs are, in effect, reused each time the transformations are 
applied. A more traditional proof rule for program correctness [Chandy et al. 88, Francez 92 
Lamport 80] has a shorter formal justification, but requires the designer to produce a rnanual proof 
each time the rule is applied. We believe that it is much more efficient to verify the correctness of 
a transformation that can be reused many times, even if the proof is somewhat lengthy. 

Correctness-preserving transformations for distributed systems are, in principle, a foundation 
for the eventual goal of compiling abstract specifications into architecturally adequate code. Those 
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who find that objective too distant should, nevertheless, be interested in the medium-term goal 
of automating certain laborious and error-prone parts of the development process. An interactive 
compiler that handles much of the labor — and is guaranteed not to introduce the deadlocks and 
other errors that plague concurrent systems — would be valuable, even if it still depends heavily on 
human design creativity. This research is designed to support both the medium- and the long-term 

goals. 
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A    Proofs of the Theorems 

This section presents the proofs of all propositions, lemmas, and theorems in the paper. The 
following definitions will be useful: 

An event is the execution of an action. The n'th execution of an action a along some computation 
TT will be denoted by an. 

If an, bm are two events along TT, with an preceding bm, then we denote the portion of TT between 
an and bm (including an,bm) by 7r(an,6n). 

Let Qi be a process which contains the action expression Ej inits body. We say Qi is at Ei is 
Qi readies the actions in initial(Ei). We say Qi is in Ei if Qi readies some action of Ei not in 

initial (Ei). 

Let Q = P[c/c;E]. If TT is a layered computation of Q, then TT < c;E/c > denotes the compu- 
tation that results from removing all events of E from TT. 

Let Q = P[c/E; c]. If TT is a layered computation of Q, then n < E; c/c > denotes the compu- 
tation that results from removing all events of E from TT. 

Let Q = P[c/E]. If IT is a layered computation of Q, then IT < E/c > denotes the computation 
that results from removing all events of E from IT. 

If Q results from P by applying any of the three transformations, then let En denote the n'th 
iteration of E (along a particular computation TT of Q). We say an, bn are adjacent in TT with respect 
to En if there is no event from En in the portion of TT between an and bn. (We assume, without 
loss of generality, that an precedes bn along TT.) 

Proposition 1    If actions b, c are independent in program P, and P —> P', then P —> P'. 

Proof: Since b and c are independent in P, we have PAP(b) n PAP(c) = 0 by definition 11. Let 

P = (\\ i G <p : Pi), and P" be such that P 4 P" 4P'. Then, by definition 7, 

P" = (|| i G PAP(b) : PI') || (|| i E if - PAP{b) : Pi),    where Pi A P/' for all i G PAP(b) 

Hence, by definition 7 and PAP{b) D PAP(c) = 0, 

P' = (|| t G PAp(b) : Pf) || (|| i e PAP(c) : P[) || (|| t € v» - (PAP(b) U PAP(c)) : Pi), 
where Pi 4 P[ for all i G PAP(c) 

By Pi 4 P/ for all i G P^p(c) and definition 7, 

P4P'" where P'" = {\\ie PAP(c) : P[) \\ (\\i€<p- PAP{c) : Pi) 

Then, by Pi A P-' for all i G PAP(6) and definition 7, 

P'" 4 (|| i G PAp(c) : P/)  ||  (|| i G PAP(b) : P/')  ||  (|| t G <p - (PAP(b) U PAP(c)) : P) 

Hence P'" 4 P', and so P 4 P"' 4 P'. Thus P A P'. □ 

Proposition 2    Lef P -^ Q.Ifn and p are equivalent, then P —> Q. 

Proof: The proof is by induction on the number m of exchanges of independent adjacent actions 
required to obtain p from TT. 

Base Case: m = 1. 
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Now p is obtained from IT by one exchange. Hence we can write ir = ir'abn", p = n'bcnr", where a, b 
are the exchanged independent actions. Thus we have 

P -^> P' -^> P" -^ Q (*) 

for some P',P". 

Since a, 6 are independent in P, we can apply proposition 1 to P'-^-»P", thereby concluding 

pf-to+p». Using this result and (*) we have P^UP'-^P"^Q. Hence P-^Q. Thus the 
base case is established. 

Induction Step: m = n + 1, n > 1, where the inductive hypothesis is assumed for n exchanges. 

Since p is obtained from n by n +1 exchanges, there must exist a 77 such that 77 is obtained from 7r 
by n exchanges, and p is obtained from 77 by one exchange. By the inductive hypothesis, we have 
P -^ Q. Since p is obtained from 77 by one exchange, we use same argument as employed in the 
base case (i.e., for a single exchange) to conclude P -A- Q. This establishes the induction step.   □ 

Lemma 3 Let Q = P[c/c;E}. For every computation n of Q, there exists an equivalent layered 
computation n'. 

Proof: Let an, bn denote the events in 7r corresponding to the execution of a, b in the n'th iteration 
of E. Assume that an,bn are adjacent in it with respect to En, and, without loss of generality, 
assume that an precedes bn along ir. Let d™ be an arbitrary event in 7r(an,6n). By definition of 
adjacent, dm is not an event of E71. Because c synchronizes entry to E, d cannot be an event of 
Em,m ^ n. Hence dm is an event of P, i.e., d G alphabet(P). Since cn occurs before an along 7r, 
we have the following ordering: 

cn an d™ bn 

Now any P; G PAq(b) must also be in PAQ(C) by definition of [c/c;E\. Hence Pi cannot be a 
participant in d since d £ alphabet(E) (and so dm cannot be an event of En, which it must be if Pj 
participates in it). Hence d and b are independent actions and so can be commuted. Since dm is 
an arbitrary event between an and bn, all such events can be commuted. Hence an, bn can be made 
strictly adjacent, i.e., with no other events at all in between them. Since an, bn is an arbitrary pair 
that is adjacent with respect to En, it follows that all such pairs can be brought together. Hence 
we can produce an equivalent computation in which the events of En form a single contiguous 
subsequence. Repeating this operation for all En (i.e., for all values of n) gives us the computation 
7r'. D 

Lemma 4 Let Q = P[c/E;c]. For every computation TT of Q, there exists an equivalent layered 
computation IT'. 

Proof: Let an, bn denote the events in it corresponding to the execution of a, b in the n'th iteration 
of E. Assume that an,bn are adjacent in IT with respect to En, and, without loss of generality, 
assume that an precedes bn along TV. Let dm be an arbitrary event in ir(an,bn). By definition of 
adjacent, d™ is not an event of En. Because c synchronizes exit from E, d cannot be an event of 
Em,m 7^ n. Hence dm is an event of P, i.e., d G alphabet(P). Since c" occurs before an along 7r, 
we have the following ordering: 

an d™ bn cn 

Now any Pj G PÄQ{b) must also be in PAQ(C) by definition of [c/E;c].   Hence P{ cannot be a 
participant in d since d 0 alphabet(E) (and so dm cannot be an event of En, which it must be if Pi 
participates in it). Hence d and a are independent actions and so can be commuted. Since dm is 
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an arbitrary event between an and bn, all such events can be commuted. Hence an, bn can be made 
strictly adjacent, i.e., with no other events at all in between them. Since an, bn is an arbitrary pair 
that is adjacent with respect to En, it follows that all such pairs can be brought together. Hence 
we can produce an equivalent computation in which the events of En form a single contiguous 
subsequence. Repeating this operation for all En (i.e., for all values of n) gives us the computation 

/ D 
■K 

Lemma 5 Let Q = P[c/E]. For every computation ir of Q, there exists an equivalent layered 

computation TT'. 

Proof: Let an, bn denote the events in 7r corresponding to the execution of a, b in the n'th iteration 
of E. Assume that an,bn are adjacent in IT with respect to En, and, without loss of generality, 
assume that an precedes bn along n. Let dm be an arbitrary event in 7r(on,6n). By definition 
of adjacent, d™ is not an event of En. By the no-overtaking condition, d™ cannot be an event 
of Em,m ^ n. Hence eP1 is an event of P, i.e., d G alphabet(P). Hence, we have the following 

ordering: 
an dm bn 

Now any Pi G PÄQ(d) cannot be a participant in both a and b since d 0 alphabet(E) (and so 
d™ cannot be an event of En, which it must be if Pi participates in a, b, and d). Furthermore, 
if a and d have some process in common, then d™ follows an causally along ir. If follows that no 
participant Pi of d can execute bn after it has executed dm, since this would involve Pi's leaving 
W1 to execute <f" and then re-entering En to execute bn. By construction of [c/E], this behavior is 
not possible. Hence, we conclude that either a and d are independent, or b and d are independent. 
Hence, dm can be commuted with either an or bn. Since d"1 is an arbitrary event between an and 
bn, all such events can be commuted in this way, and so an,bn can be made strictly adjacent, i.e., 
with no other events at all in between them. Since an, bn is an arbitrary pair that is adjacent with 
respect to En, it follows that all such pairs can be brought together. Hence we can produce an 
equivalent computation in which the events of En form a single contiguous subsequence. Repeating 
this operation for all En (i.e., for all values of n) gives us the computation TT'. □ 

Theorem 6    Let Q = P[c/c;E]. If P is deadlock-free, then so is Q. 

Proof: Let Q' be an arbitrary derivative of Q, i.e., Q-^Q' for some computation TT. By lemma 3, 

there exists a layered computation it' of Q such that ir' = ir. Hence, by proposition 2, Q—>Q'. 
There are two cases. 

Case 1: no Q\ in Q' is at Ei or in E{. By a projection argument, we can show that the computation 

p _ j < c; E/C > is a computation of P. Let P-^-P'. Since P is deadlock free, P' A for some 
action a. We can also show that P' and Q' have the same continuations. Hence Q' A. 
(end of case 1) 

Case 2: Some Q\ in Q' is at Ei or in Ei. 
Hence ir' can be written as pep' (where p,p' could be empty).   Also, Q' = (|| i G ip : F^Qß   || 
(|| i G ij)' : Q'i) where V contains all the processes at Ei or in Ei and V' contains the remaining 
processes. By alphabet(E)r\alphabet(P) = 0 and the presence of action c, which synchronizes entry 
to Ei, we can show that F = (|| i G tp : Fi;0) is a derivative of E. Hence, by the single-iteration 
property of E, FA- for some action a. Hence Q' ->■. 
(end of case 2) 

Since Q' A in both cases, and Q' is an arbitrary derivative of Q, we conclude that Q is deadlock- 
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free. □ 

Theorem 7    Let Q = P[c/E;c]. If P is deadlock-free, then so is Q. 

Proof: Let Q' be an arbitrary derivative of Q, i.e., Q -^> Q' for some computation IT. By lemma 3, 

there exists a layered computation TT' of Q such that TT' = IT. Hence, by proposition 2, Q -^ Q'. 
There are two cases. 

Case 1: no Q\ in Q' is at E{ or in P*. By a projection argument, we can show that the computation 

p = IT' < c; E/c > is a computation of P. Let P -A P'. Since P is deadlock free, P' A for some 
action a. We can also show that P' and Q' have the same continuations. Hence Q' A. 
(end of case 1) 

Case 2: Some Q\ in Q' is at E{ or in E{. 
Hence 7r' can be written as pep' (where p,p' could be empty). Also, Q' = (|| i e tp : P,; Q'J || (|| 
ietf : Qß where ^> contains all the processes at Pj or in Ei and ?/>' contains the remaining processes. 
By the conspiracy-resistance, and coordinated-entry conditions, and the exit-synchronization pro- 
vided by action c, we are guaranteed that eventually, every participant of c will enter E. Hence, 
any computation IT" of Q' eventually reaches a derivative Q" of the form Q' = (|| i e P4C(Q) : 

FuQl) II (Htev-PiMQJiQ?). 
By alphabet(E) n alphabet(P) = 0, we can show that P = (|| * G P^4Q(C) : PJ; 0) is a derivative 

of E. Hence, by the single-iteration property of E, F A for some action a. Hence Q" A. 
(end of case 2) 

Since Q' is an arbitrary derivative of Q, and Q' A in the first case, and Q' is guaranteed to 
always generate a derivative of the form of Q" in the second case, we conclude that it is impossible 
for a derivative of Q that has no enabled actions to be generated. Hence q is deadlock-free.        D 

Theorem 8    Let Q = P[c/E]. If P is deadlock-free, then so is Q. 

Proof: Let Q' be an arbitrary derivative of Q, i.e., Q -^ Q' for some computation IT. By lemma 4, 

there exists a layered computation IT' of Q such that IT' = IT. Hence, by proposition 2, Q -^-> Q'. 
There are two cases. 

Case 1: no Q'{ in Q' is at E{ or in E{. By a projection argument, we can show that the computation 
p = TT' < c; E/c > is a computation of P. Let P -A P'. Since P is deadlock free, P' A for some 
action a. We can also show that P' and Q' have the same continuations. Hence Q' A. 
(end of case 1) 

Case 2: Some Q[ in Q' is at Pi or in E{. 
Hence 7r' can be written as pep' (where p,p' could be empty). Also, Q' = (|| i e ip : PijQ-) || (|| 
«' G V' : QD where ^ contains all the processes at P* or in Pi and ?/>' contains the remaining processes. 
By the conspiracy resistance, coordinated-entry, and no-overtaking conditions, we are guaranteed 
that eventually, every participant of c will enter P. Hence, any computation TT" of Q' eventually 
reaches a derivative Q" of the form Q' = (|| i e PAC(Q) : F{- Q'() \\ (|| i e V - PA:(Q) : Q?). 

By alphabet(E) D alphabet(P) = 0, we can show that P = (|| i G P^4Q(C) : Pi;0) is a derivative 
of P. Hence, by the single-iteration property of P, P A for some action a. Hence Q" A. 
(end of case 2) 

Since Q' is an arbitrary derivative of Q, and Q' A in the first case, and Q' is guaranteed to 
always generate a derivative of the form of Q" in the second case, we conclude that it is impossible 
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for a derivative of Q that has no enabled actions to be generated. Hence q is deadlock-free. □ 

Theorem 9    Let Q = P[c/c; E\. If PAP{a) D PAP(b) ^ 0 and P (=* a ~> b, then Q\=$a^b. 

Proof: Let Q -^ Q' ^>, where TTOV is an arbitrary maximal fair computation of Q with some 
occurrence of a along it. By lemma 3, there exists a layered computation p equivalent to iranir'. 
Hence, by a projection argument, p < c; E/c > is a fair computation of P. Since P |=$ a ~> b, we 
conclude that p < c; £/c > contains an event bm following an. Since a, 6 are not independent, TT' 

also contains fcm following an (since a, 6 cannot be commuted). Since Tranir' was chosen arbitrarily, 

it follows that Q f=$ a ~> 6. 

Theorem 10    let Q = P[c/c;E]. If PAE(a) n PAB(6) ^ 0 ^ # t= * ~> 6, «ACT» Q |=$ a ^ &. 

Proof: Let Q-^Q'^i, where 7raV is an arbitrary maximal fair computation of Q with some 
occurrence of a along it. By lemma 3, there exists a layered computation p equivalent to TTOV. 

By fairness, E \= a ~> 6, and the entry-synchronization provided by c, we can show that every 
layered computation satisfies a ~» b. Hence p\=a^b. Hence p contains bn following an. Since 
a, b are not independent (and therefore cannot be commuted), n' must contain bn. Since TTOV was 

chosen arbitrarily, it follows that Q \=<i> a ~> b: a 

Theorem 11    Let Q = P[c/c; E]. IfP\=*a^*c, and E \= Ob, then Q |=# a ~» 6. 

Proof: Let Q -^, where ?r is an arbitrary maximal fair computation of Q. By lemma 3, there 
exists a layered computation p equivalent to iranir'. By a projection argument, p < c; E/c > is a 
fair computation of P. Since P |=# a ~> 6, we conclude that p < c;B/c>h a ~> c- Hence> by 
a projection argument, we conclude that every occurrence of a along TT is followed eventually by 
entry into E. By fairness and E \= Ob, this in turn leads to execution of 6, Hence TT \= a ~> b. Since 
IT was chosen arbitrarily, it follows that Q f=$ a ~> 6. 

Theorem 12   lei Q = P[c/E; c]. IfPAP(a) nP^P(6) ^ 0 <m<* P K « ~> &> f/ien Q N ° ~> 6- 

pr00/: Let Q -^ Q' ^, where TTOV is an arbitrary maximal fair computation of Q with some 
occurrence of a along it. By lemma 4, there exists a layered computation p equivalent to Tranir'. 
Hence, by a projection argument, p < E\ c/c > is a fair computation of P. Since P |=$ a ~> 6, we 
conclude that p < £;c/c > contains an event bm following an. Since a, 6 are not independent, TT' 

also contains bm following an (since a, b cannot be commuted). Since 7ran7r' was chosen arbitrarily, 

it follows that Q |=$ a ~> b. 

Theorem 13    Let Q = P[c/E;c}. If PAE(a) nPAE(b) ^$andE\=a^b, then Q |=* a~> 6. 

pr00y. Let Q-^Q'^-, where 7ran7r' is an arbitrary maximal fair computation of Q with some 
occurrence of a along it. By lemma 4, there exists a layered computation p equivalent to Tranir'. 

By fairness, E \= a ~> 6, and the entry-synchronization provided by the conspiracy-resistance 
and coordinated-entry conditions, we can show that every layered computation satisfies a ~> b. 
Hence p\=a^b. Hence p contains 6n following a". Since a, 6 are not independent (and therefore 
cannot be commuted), TT' must contain bn.   Since TraV was chosen arbitrarily, it follows that 
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Q [=$ a ~> b. □ 

Theorem 14    Let Q = P[c/E; c]. If P (=$ a ~v c, and E \= Ob, then Q (=$ a ~» b. 

Proof: Let Q —>, where ir is an arbitrary maximal fair computation of Q. , By lemma 4, there 
exists a layered computation p equivalent to -KOT-K'. By a projection argument, p < c;E/c > is a 
fair computation of P. Since P |=$ a ~> b, we conclude that p < c;E/c >|=$ a ~> c. Hence, by 
a projection argument, and the entry-synchronization provided by the conspiracy-resistance and 
coordinated-entry conditions, we conclude that every occurrence of a along -K is followed eventually 
by entry into E. By fairness and E \= 06, this in turn leads to execution of b, Hence IT f= a ~» b. 
Since -n was chosen arbitrarily, it follows that Q |=$ o ~» b. D 

Theorem 15    Let Q = P[c/£]. //PAP(a) n P>lp(6) ^ 0 and P |=$ a ~> b, then Q (=$ a ~> 6. 

Proo/: Since the proof of theorem 12 above did not use the fact that action c provides exit- 
synchronization to E, then the same proof carries over here. D 

Theorem 16    Let Q = P[c/E}. If PAE(a) n PAE{b) ^ 0 andE\=a^b, then Q (=$ a ~> b. 

Proof: Since the proof of theorem 13 above did not use the fact that action c provides exit- 
synchronization to E, then the same proof carries over here. D 

Theorem 17    Let Q = P[c/E]. IfP\=^a^c, and E |= 06, then Q (=$ a ~> 6. 

Proof: Since the proof of theorem 14 above did not use the fact that action c provides exit- 
synchronization to E, then the same proof carries over here. D 
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